О статье Ю.М. Широкова «Единый формализм для квантовой и классической теории рассеяния» и одевающих операторах и фоновом формализме в квантовой теории поля

О статье Ю.М. Широкова «Единый формализм для квантовой и классической теории рассеяния» и одевающих операторах и фоновом формализме в квантовой теории поля

И. Арефьева

Математический институт им. В.А. Стеклова, РАН Физический факультет, МГУ

Семинар, посвященный памяти Ю.М. Широкова [1925-1980] 13 ноября 2025

Ю.М. Широкова «Единый формализм для квантовой и классической теории рассеяния»

ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА Том 38, № 3 март, 1979

ЕДИНЫЙ ФОРМАЛИЗМ ДЛЯ КВАНТОВОЙ И КЛАССИЧЕСКОЙ ТЕОРИЙ РАССЕЯНИЯ

Ю. М. Широков

Нерелятивистская теория рассеяния сформулирована на языке только таких физических и математических понятий, которые имеют смысл как в классической, так и в квантовой механике. Получено интегральное уравнение, итерации которого дают квантовые поправки к классическому рассеянию.

Ю.М. Широкова «Единый формализм для квантовой и классической теории рассеяния»

Московский государственный университет

Поступила в редакцию 14 июня 1978 г.

Литература

- [1] Ю. М. Широков. ТМФ, 25, 307, 1975.
- [2] Ю. М. Широков. ТМФ, 28, 308, 1976.
 [3] Ю. М. Широков. ТМФ, 29, 309, 1976.
 [4] Ю. М. Широков. ТМФ, 31, 327, 1977.

- Дж. Тейлор. Теория рассеяния, «Мир», 1975. K. Alder, A. Winther. Theory of Coulomb exitation by heavy ions, North Holland, Amsterdam, 1975.

Ю.М. Широкова «Единый формализм для квантовой и классической теории рассеяния»

• Классическая теория рассеяния полностью управляется уравнениями Гамильтона.

Пример - рассеяние Резерфорда.

- Ключевые понятия:
 - прицельный параметр
 - угол рассеяния
 - дифференциальное сечение рассеяния

- Связь со статьей Широкова Единая математическая структура, описывающая как классическое, так и квантовое рассеяние.
 - состояние описывается ф-лом $\rho(p,q)$; в классике – распределение вероятностей в фазовом пространстве.
 - Оператор рассеяния S_{cl} каноническое преобразованием отображающее начальные (p',q') в конечные (p,q) с сохранением скобки Пуассона.

Ядро классического оператора рассеяния в работе Ю.М. Ш.

Матричный элемент классического оператора рассеяния задается:

$$\langle p, q | \mathcal{S}_{cl} | p', q' \rangle = \delta^3(p - P(p', q'))\delta^3(q - Q(p', q'))$$

- Дельта-функции $\delta^3(p-P(...))$ и $\delta^3(q-Q(...))$ enforced cl. EOM • p and q are defined by functions P и Q от начальных условий (p', q').
- Восстановление стандартного результата.
 - **1** Он начинается с пучка частиц, все с импульсом p_0 (eq. 27): $\rho_{\rm in}(p', q') = \delta^3(p' - p_0).$
 - $oldsymbol{\circ}$ Он применяет оператор рассеяния $\mathcal S$ для получения выходящего состояния ρ_{out} (eq. 29).
 - **3** Интегрируя по поперечным координатам q_{\perp} (которые связаны с прицельным параметром), он приходит к общей формуле для сечения (eq. 32).
 - 4 Наконец, подставляя классическое ядро (eq. 35) в эту формулу и используя геометрическое соотношение между прицельным параметром и углом (еq. 36-39), он выводит стандартную формулу для классического сечения (ед. 40):

$$\frac{d\sigma_{\rm cl}}{d\Omega} = \frac{b}{\sin heta} \left| \frac{db}{d heta} \right|$$

Рассеяние в квантовом случае в работе Ю.М. Ш.

Квантовая величина $\langle \mathbf{p}, \mathbf{q} | \mathcal{S}_{\text{\tiny KB}} | \mathbf{p}', \mathbf{q}' \rangle$ в полной аналогии с (5) выражается через элементы $\langle \mathbf{p}_1 \, | \, \hat{\mathbf{S}} \, | \, \mathbf{p}_2 \rangle$ матрицы рассеяния

(41)
$$\langle \mathbf{p}, \mathbf{q} | \mathcal{S}_{\text{KB}} | \mathbf{p}', \mathbf{q}' \rangle = \frac{1}{(2\pi\hbar)^3} d^3\mathbf{k} d^3\mathbf{k}' \exp\left(\frac{i}{\hbar} \mathbf{q}' \mathbf{k}' - \frac{i}{\hbar} \mathbf{q} \mathbf{k}\right) \times$$

$$\times \langle \mathbf{p}^{+1}/_2\mathbf{k}|\hat{S}|\mathbf{p}'+^{1}/_2\mathbf{k}'\rangle \langle \mathbf{p}'-^{1}/_2\mathbf{k}'|\hat{S}^{-1}|\mathbf{p}-^{1}/_2\mathbf{k}\rangle.$$

S-матрица связана с амплитудой рассеяния $f(\mathbf{p}_1, \, \mathbf{p}_2)$ выражением

(42)
$$\langle \mathbf{p}_{1}|\hat{S}|\mathbf{p}_{2}\rangle = \delta^{3}(\mathbf{p}_{1}-\mathbf{p}_{2}) + \frac{i}{2\pi}\langle \mathbf{p}_{1}|R|\mathbf{p}_{2}\rangle,$$

где $\langle \mathbf{p}_1 | \hat{R} | \mathbf{p}_2 \rangle = \delta(E_1 - E_2) f(\mathbf{p}_1, \mathbf{p}_2)$. Подставив теперь (41) в (32) с учетом (33), (42), получим для квантового сечения рассеяния стандартное выражение

(43)
$$d\sigma_{KB}/dO = m^2 \hbar^2 |f(\mathbf{p}, \mathbf{p}_0)|^2$$
.

Связь с работами Л.Д. Фаддеева и учеников

- Одевающие операторы
 - Л. Д. Фаддеев. ДАН СССР, 152, 573, 1963
 - И. Я. Арефьева, "Перенормированная теория рассеяния для модели Ли", $TM\Phi$, 12:3 (1972), 331

$$U_{\pm} = \lim_{t \to \pm \infty} U(t)$$

$$U(t) = e^{itH} e^{-itH_0} \Rightarrow U_{ren}(t) = e^{itH} W e^{-it(H_0 + \delta H_0)} W^{-1}$$

$$U_{\pm,ren} = \lim_{t \to \pm \infty} U_{ren}(t)$$

- Связь с работой П.П. Кулиш и Л.Д. Фаддеев
- P. P. Kulish and L. D. Faddeev, "Asymptotic conditions and infrared divergences in quantum electrodynamics," TMP 4 (1970), 745

$$U(t) = e^{itH}e^{-itH_0} \Rightarrow U_{dressed}(t) = e^{itH}\mathcal{U}_{as}(t)$$

Связь с работой АСФ

И. Я. Арефьева, А. А. Славнов, Л. Д. Фаддеев, "Производящий функционал для S -матрицы в калибровочно-инвариантных теориях", ТМФ, 21:3 (1974), 311-321

1. ПРОИЗВОДЯЩИЙ ФУНКЦИОНАЛ ДЛЯ S-МАТРИЦЫ

Наше основное утверждение состоит в том, что для теории, описываемой дагранжианом $L(\omega)$, матрица рассеяния может быть представлена в виле континуального интеграла

(1)
$$S(\varphi_{\theta})=N^{-1}\int \exp\{iA(\varphi)\}d\mu, \quad A(\varphi)=A_{\theta}(\varphi)+A_{I}(\varphi)=$$
$$=\int L_{\theta}(x)dx+\int L_{I}(x)dx.$$

В простейшем случае скалярного поля мера $d\mu$ есть просто произведение дифференциалов $\prod d_{\mathbb{C}}(x)$. Интегрирование в формуле (1) ведется по

полям ф в окрестности классических решений уравнений Лагранжа -Эйлера $\delta A/\delta \phi(x) = 0$, причем классические поля $\phi_{\rm кл}$ параметризоны полями фа, являющимися решениями свободных уравнений движения $\delta A_0/\delta \varphi(x) = 0$,

(2)
$$\varphi_{nn} = \varphi_0 + \widetilde{\varphi}_{nn} = \varphi_0(x) + \int D^{\circ}(x-y) \frac{\delta A_I}{\delta \varphi(y)} dy,$$

 $D_c(x)$ — фейнмановская функция Грина, определяемая квадратичной формой $L_0(x)$. Коэффициентные функции в разложении функционала S по Ф₀ совпадают с коэффициентными функциями в разложении S-матрицы по нормальным произведениям асимптотических полей.

Более явно формулу (1) можно записать в виде

(3)
$$S(\varphi_0) = N^{-1} \int \exp\{iA(\varphi + \varphi_{RR})\}d\mu$$
,

где интегрирование ведется уже по всем полям ф, убывающим на бесконечности.

Связь с AdS/CFT соответствием

Основным утверждением AdS/CFT соответствия является эквивалентность статистических сумм двух теорий (GKPW-словарь)

$$Z_{\mathrm{CFT}}[\mathbf{\Phi_0}] = Z_{\mathrm{bulk}}[\mathbf{\Phi_0}] \qquad (*),$$

where the both sites of (*) are defined as

$$\begin{split} Z_{CFT}[\boldsymbol{\Phi_0}] &= \left\langle e^{\int_{\partial AdS} d^d x \, \boldsymbol{\Phi_0}(\vec{x})} \mathcal{O}(\vec{x}) \right\rangle_{CFT} \\ Z_{\text{bulk}}[\boldsymbol{\Phi_0}] &= \int e^{\int_{AdS} d^{d+1} x S[\boldsymbol{\Phi}]} \prod_{\boldsymbol{\Phi}|_{bnd} = \boldsymbol{\Phi_0}} d\boldsymbol{\Phi} \end{split}$$

S. Kim, P. Kraus, R. Monten and R. M. Myers, "S-matrix path integral approach to symmetries and soft theorems," JHEP 10 (2023), 036