

Научная конференция НИИЯФ МГУ по итогам 2024 года 24 февраля 2025, Москва, Россия

Применение лазерных технологий для изготовления компонентов магнитных биосенсоров

<u>И.О. Джунь</u>, А.В. Назаров, И.Л. Ромашкина, М.Г. Козин, Н.Г. Чеченин

Д.В. Шулейко, Д.Е. Преснов, В.Ю. Нестеров, Н.Н. Перова, Н.С. Перов, Е.А. Константинова, С.В. Заботнов

Введение. Лаборатория на чипе

Введение. Магнитные биосенсоры

Магниторезистивные

Связанный ферромагнетик

Постановка задачи

Лазерное

Huang et.al. Lab Chip 13, 3098 (2013)

- Чувствительность к нормальной компоненте МП
- Удержание МНЧ за счет локальных МП
- Механическое удержание МНЧ

- Формирование
 МНЧ
- Формирование контактной разводки

Методика эксперимента. Формирование МНЧ

Лазерный жидкофазный синтез

Мишень

- Стекло/Со 5-500 нм
- Стекло/Fe 250 нм

- Сканирующая и просвечивающая электронная микроскопия
- Комбинационное рассеяние света
- Динамическое рассеяние света
- Мессбауеровская спектроскопия
- Вибрационная магнитометрия
- Спектроскопия ЭПР

Магнитные наночастицы на основе Со

- Сферические МНЧ, состоят преимущественно из Со₃О₄
- Возможно наличие Со
- Толщина пленки < 35 нм приводит к двукратному уменьшению дисперсии и росту среднего p-pa МНЧ

Dzhun et. al. Bull. RAS: Phys., 88(4), 540-548 (2024) 6

Магнитные наночастицы на основе Fe

- Средний размер 90 нм
- Дисперсия ~30%
- Сферическая форма МНЧ Состоят из железа (ядро) и оксида железа FeO (оболочка)

• Стабильны на воздухе при Т_{комн}, при нагреве FeO -> Fe₂O₃

Dzhun et. al. Bull. RAS: Phys., 88(Suppl.2), 166-173 (2024)

Методика эксперимента. Модификация поверхности

 $\lambda = 1250 \text{ HM}$

 $t = 135 \, \phi c$

E = 15 мкДж

 $f = 10 \ \Gamma$ ц

Lens f = 8 cm

Результаты АСМ и МСМ

RAS: Phys.,

(2024)

Рельеф поверхности (АСМ изображение)

Магнитная конфигурация (МСМ изображение)

намагниченности

Применение в биосенсорах

Скопление
 МНЧ около
 рельефной
 области

Обменное смещение ~150 Э в рельефной области обеспечивает потенциальную работоспособность биосенсора

Dzhun et. al. Bull. RAS: Phys., 88(Suppl.2), 166-173 (2024)

МНЧ на выступах и внутри канавок

Лазерная печать проводящих дорожек

Прямой лазерный перенос

Наибольшее кол-во в-ва и наиболее высокие значения проводимости получены для двухимпульсного режима

Nastulyavichus, ..., Dzhun et. al. Las. Phys. Lett. 21(3), 035630, (2024)

- Показана возможность синтеза наночастиц методом импульсной лазерной абляции тонких пленок кобальта в воде. Средний размер формируемых наночастиц варьируется в диапазоне 70–1000 нм в зависимости от толщины аблируемой пленки. При толщинах пленок менее 35 нм дисперсия наночастиц по размерам минимальна. Полученные наночастицы характеризуются магнитным откликом и по своим структурным свойствам наиболее близко соответствуют оксиду кобальта Co₃O₄.
- Показана возможность синтеза магнитных наночастиц Fe@FeO путем лазерной абляции тонких пленок железа в ацетоне. Фемтосекундное лазерное структурирование кремниевой подложки с последующим осаждением связанного ферромагнитного слоя NiFe/IrMn приводит в возникновению дополнительного магнитного отклика вдоль нормали к поверхности образца с сохранением обменного смещения. Полученные с помощью лазерного структурирования магнитные наночастицы и периодически модулированные поверхности подложек являются перспективными базовыми компонентами для повышения чувствительности биосенсоров.
- Продемонстрирована возможность одностадийной печати медных проводящих элементов на стеклянной подложке с помощью метода лазерно-индуцированного прямого переноса. Максимальная удельная проводимость ≈6 тыс. см−1 была достигнута при оптимальной скорости сканирования 3800 мм с⁻¹, что обеспечивало двухимпульсную печать с лазерным переносом первым импульсом и лазерным отжигом вторым. Предлагаемый способ облегчает технологический процесс печати токопроводящих элементов и повышает его производительность

Спасибо за внимание!

- I.O. Dzhun, V.Yu. Nesterov, D.V. Shuleiko, et al., Bull. Russ. Acad. Sci. Phys. 88 (4), 540 (2024).
- I. O. Dzhun, D. V. Shuleiko, A. V. Nazarov, et al. "Laser-Assisted Nanomaterials Fabrication from Thin Films for Magnetic Biosensors", Bull. Russ. Acad. Sci. Phys. 88 (Suppl.2), S166 (2024).
- A. Nastulyavichus, ..., I. Dzhun et. al. "One-step additive LIFT printing of conductive elements" Las. Phys. Lett. **21**(3), 035630 (2024)

irina.dzhun@gmail.com https://istina.msu.ru/workers/384655/

