ПЕРСПЕКТИВЫ ИЗУЧЕНИЯ АМПЛИТУД ЭЛЕКТРОВОЗБУЖДЕНИЯ НУКЛОННЫХ РЕЗОНАНСОВ ПРИ БОЛЬШИХ ПЕРЕДАННЫХ ИМПУЛЬСАХ

ОЭПВАЯ НИИЯФ МГУ

Е.Л. Исупов

Jefferson Lab (Newport News, VA, USA)

Summary of Published CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered W-range, GeV	Covered Q ² - range, GeV ²	Measured observables	 • dσ/dΩ-CM angular distributions • A_b, A_t, A_{bt}-longitudinal beam, target, and beam-target asymmetries • P⁰, P' -recoil and transferred polarization of strange baryon Over 120,000 data points! Almost full coverage of the final hadron phase space
π +n	1.1-1.38 1.1-1.55 1.1-1.7 1.6-2.0	0.16-0.36 0.3-0.6 1.7-4.5 1.8-4.5	dσ/dΩ dσ/dΩ dσ/dΩ, A _b dσ/dΩ	
π ⁰ p	1.1-1.38 1.1-1.68 1.1-1.39 1.1-1.8	0.16-0.36 0.4-1.8 3.0-6.0 0.4-1.0	$d\sigma/d\Omega$ $d\sigma/d\Omega, A_b, A_t, A_{bt}$ $d\sigma/d\Omega$ $d\sigma/d\Omega, A_b$	
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ	
K ⁺ Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ Pº, P'	
$K^+\Sigma^0$	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ P'	
π ⁺ π ⁻ p	1.3-1.6 1.4-2.1 1.4-2.0	0.2-0.6 0.5-1.5 2.0-5.0	Nine 1-fold differential cross sections	

The measured observables from CLAS are stored in the <u>CLAS Physics Data Base http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi</u>

Extraction of γ_vNN* Electrocouplings from Exclusive Meson Electroproduction off Nucleons

 Consistent results on γ_vpN* electrocouplings from different meson electroproduction channels are critical in order to validate reliable extraction of these quantities.

Roper resonance before and after CLAS

THE EUROPEAN PHYSICAL JOURNAL A

Review

Strong interaction physics at the luminosity frontier with 22 GeV electrons at Jefferson Lab

A. Accardi¹, P. Achenbach², D. Adhikari³, A. Afanasev⁴, C. S. Akondi⁵, N. Akopov⁶, M. Albaladejo⁷, H. Albataineh⁸, M. Albrecht², B. Almeida-Zamora⁹, M. Amaryan¹⁰, D. Androić¹¹, W. Armstrong¹², D. S. Armstrong¹³, M. Arratia¹⁴, J. Arrington¹⁵, A. Asaturyan¹⁶, A. Austregesilo², H. Avakian², T. Averett¹³, C. Ayerbe Gayoso¹³, A. Bacchetta¹⁷, A. B. Balantekin¹⁸, N. Baltzell², L. Barion¹⁹, P. C. Barry², A. Bashir^{2,20}, M. Battaglieri²¹, V. Bellini²², I. Belov²¹, O. Benhar²³, B. Benkel²⁴, F. Benmokhtar²⁵, W. Bentz²⁶, V. Bertone²⁷, H. Bhatt²⁸, A. Bianconi²⁹, L. Bibrzycki³⁰, R. Bijker³¹, D. Binosi³², D. Biswas³, M. Boër³, W. Boeglin³³, S. A. Bogacz², M. Boglione³⁴, M. Bondí²², E. E. Boos³⁵, P. Bosted¹³, G. Bozzi³⁶, E. J. Brash³⁷, R. A. Briceño³⁸, P. D. Brindza¹⁰, W. J. Briscoe⁴, S. J. Brodsky³⁹, W. K. Brooks^{24,40,41}, V. D. Burkert², A. Camsonne², T. Cao², L. S. Cardman², D. S. Carman², M. Carpinelli⁴², G. D. Cates⁴³, J. Caylor², A. Cleentano²¹, F. G. Celiberto⁴⁴, M. Cerutti¹⁷, L. Chang⁴⁵, P. Chatagnon², C. Chen^{46,47}, J.-P. Chen², T. Chetry³³, A. Christopher¹, E. Christy², E. Chudakov², E. Cisbani²³, I. C. Cloët¹², J. J. Cobos-Martinez⁴⁸, E. O. Cohen^{49,50}, P. Colangelo⁵¹, P. L. Cole⁵², M. Constantinou⁵³, M. Contalbrigo¹⁹, G. Costantini^{17,29}, W. Cosyn³³, C. Cotton⁴³, A. Courtoy¹⁶⁸, S. Covrig Dusa², V. Crede⁵, Z.-F. Cui⁵⁴, A. D'Angelo⁵⁵, M. Döring⁴, M. M. Dalton², I. Danilkin⁵⁶, M. Davydov³⁵, D. Day⁴³,

Fig. 48 Results for the $p \rightarrow \Delta(1232)3/2^+$ magnetic transition form factor (left) and the $N(1440)1/2^+ A_{1/2}(Q^2)$ electrocoupling (middle) [331-333] from studies of πN and $\pi^+\pi^- p$ electroproduction in measurements of the JLab 6-GeV era. CSM predictions with the running dressed quark mass deduced from the QCD Lagrangian, see Fig. 47 left, are shown as blue solid lines [309,334] and by employing a simplified contact qq-interaction resulting in a momentum-independent (frozen) quark mass of ≈ 0.36 GeV as red dotted lines [335]. Comparisons between the CSM prediction (solid line) on the $A_{1/2}(Q^2)$ $\Delta(1600)3/2^+$ electrocoupling [326] and preliminary results from the studies of $\pi^+\pi^-p$ electroproduction with CLAS are shown on the right. The data points with error bars have become available from independent analyses of the cross sections in overlapping W-intervals with substantial contributions from the $\Delta(1600)3/2^+$ as labeled for Q^2 from 2 to 5 GeV²

Measurements with CLAS12 and "CLAS22"

<u>CLAS12</u>: Extension of the results on N* electrocouplings for W < 2.5 GeV and Q² to 10 GeV² from exclusive channels, πN , $\pi\pi N$, KY, K*Y, KY*, allows us to map out the range of quark momenta where ~50% of dressed quark mass is generated

Efficiency corrected $\pi^+\pi^-p$ yields binned over W/Q² from RG-A data

Meson electroproduction yields measured with the CLAS12

$$\pi^+ n$$
: $E_{beam} = 24$ GeV

 $W = \sqrt{(P_e - P_{e'} + P_{p_{init.}})^2}$ $Q^2 = -(P_e - P_{e'})^2$

Оценка возможностей извлечения электромагнитных амплитуд возбуждения резонансных состояний нуклона при переданных импульсах до 30 ГэВ²

• Моделирование реакций электророждения πN, KY и π⁺π⁻р при энергии 22 ГэВ демонстрирует:

Амплитуды электровозбуждения нуклонных резонансов могут быть извлечены вплоть до значений переданного импульса $Q^2 \sim 30 \ \Gamma \Rightarrow B^2$ при $\mathcal{L} \sim 2 - 5 \times 10^{35} \ cm^{-2} \ c^{-1}$

- Энергия непрерывного пучка электронов 22 ГэВ
- Детектор большого аксептанса CLAS12
- Рекордная светимость
- Возможность изучения эксклюзивных реакций

 Расширение результатов по амплитудам электровозбуждения возбужденных состояний нуклона до значений переданного импульса Q² = 10 - 30 GeV² после увеличения максимальной энергии ускорителя CEBAF до 22 ГэВ и при светимостях 2-5 × 10³⁵ см⁻² с⁻¹ позволит исследовать как доминирующая часть массы адронов и структура возбужденных состояний нуклона может возникнуть в рамках фундаментальной Квантовой Хромодинамики

Физический факультет Московского государственного университета имени М.В.Ломоносова

Методы машинного обучения в задаче предсказания дифференциальных сечений и структурных функций электророждения пиона на протоне в резонансной области.

аспирант Голда А.В. кафедра общей ядерной физики

π^+ distribution over azimuthal angle ϕ

- Rotational properties of the production amplitudes
- Single photon exchange for $ep \rightarrow e'\pi^+ n$ reaction

$$\frac{d\sigma_{\gamma_{v}}}{d\Omega_{\pi}} = \frac{d\sigma_{u}}{d\Omega_{\pi}} + \varepsilon \frac{d\sigma_{tt}}{d\Omega_{\pi}} \cdot \cos 2\varphi + \sqrt{2\varepsilon(1+\varepsilon)} \frac{d\sigma_{lt}}{d\Omega_{\pi}} \cdot \cos \varphi \equiv A + B\cos 2\varphi + C\cos \varphi$$

- Is AI/ML capable of reconstructing the φ-dependence from the studies of the measured two-fold differential cross sections?
- Can the use of AI/ML improve knowledge of exclusive structure functions beyond the limitations imposed by restricted data coverage over azimuthal/polar angles?

E = 5.754 GeV; Q^2 = 2.915 GeV² - 1st resonance maximum

Red dots with error bars - experimental data

Blue line - fit of the experimental data by Eq. in slide #4

Green line - Neural network predictions with uncertainties shown by green areas obtained from bootstrap

AI/ML is capable of determining ϕ -dependence of π^+ n differential cross sections from the multi-dimensional data analysis

Al/ML provides predictions for π^+ n differential cross sections within ϕ -ranges where the data are not available

E = 5.754 GeV; Q^2 = 2.915 GeV² Structrure function - A

Red dots with error bars structure functions from the experimental data fit by Eq in slide #4

Black line - predicted structure function obtained from the moments of the predicted within AI/ML cross sections with uncertainties from bootstrap

Blue line - the center of the 1st resonance region (W=1.23 GeV)

Green line - the center of the 2nd resonance region (W=1.52 GeV)

Purple line - the center of 3^{rd} resonance region for π^+n (W=1.68 GeV)

Спасибо за внимание!