

Лаборатория космических лучей предельно высоких энергий НИИЯФ МГУ

Результаты исследования транзиентного свечения атмосферы: в Заполярье, горах Армении и с орбиты Земли.

Климов П.А. от лаборатории космических лучей предельно высоких энергий ОКН

> Конференция НИИЯФ МГУ по итогам 2024 года 24.02.2025

Заполярье

- Klimov, P. A., Nikolaeva, V. D., Saraev, R. E., Shchelkanov, K. D., Belov, A. A., Kozelov, B. V., ... & Sharakin, S. A. (2024). Microbursts of the UV atmospheric emission in the auroral zone. Advances in Space Research, 74(8), 3556-3568.
- Klimov, P., Nikolaeva, V., Shchelkanov, K., Saraev, R., Sigaeva, K., Kotikov, A., ... & Roldugin, A. (2024). Optical measurements of precipitating relativistic electron microbursts during geomagnetic disturbance and pulsating aurora. *Advances in Space Research*.

Арагац

 Belov A.A., Klimov P.A., Murashov A.S., Nikolaeva V.D., Saraev R.E., Sigaeva K.F., Sharakin S.A., Shchelkanov K.D., Trofimov D.A., Zotov M.Yu., Imaging near-UV photometer as an effective instrument for high energy physics of atmosphere, magnetosphere and cosmic rays Thunderstorms and Elementary Particle Acceleration (TEPA-2024)

МКС

- Sharakin, S., Barghini, D., Battisti, M., Belov, A., Bertaina, M., Bianciotto, M., ... & Zotov, M. (2024). ELVES Measurements in the "UV Atmosphere" (Mini-EUSO) Experiment Onboard the ISS and Their Reconstruction. *Cosmic Research*, 62(4), 330-338.
- Bertaina, M., Bertone, S., Bisconti, F., ... & Zotov, M. (2024). Observation of meteors from space with the Mini-EUSO detector on board the International Space Station. Astronomy & Astrophysics, 687, A304.

- ✓ 4 МАФЭУ (16×16 пикселей), счетный режим
- ✓ Временное разрешение: 2.5 мкс, 320 мкс, 1 мс
- ✓ Поле зрения: 2ү_m = 18°
- ✓ Угловое разрешение: $\Delta \gamma = a/f = 19$ мрад = 1.1°
- ✓ Площадь входного зрачка: S = 19.6 см²

Спектрометр:

 ✓ 16 ФЭУ, режим постоянного тока, со светофильтрами (337 нм, 390 нм, 430 нм, широкополосные УФС1 и КС11).

- ✓ 12 (36) МАФЭУ, 16×48 (48×48) пикселей, счетный режим
- ✓ Временное разрешение: 2,5 мкс, 320 мкс, 1 мс, 41 мс.
- ✓ Поле зрения: 2ү_m = 40°
- ✓ Угловое разрешение: $\Delta \gamma = a/f = 15$ мрад = 0.9°
- ✓ Площадь входного зрачка: S = 490 см²

Проект PAIPS (Pulsating Aurora Imaging Photometers System) – прямое измерение высоты ППС и спектральных особенностей излучения

70° N

Проект PAIPS

Пример измерения временной структуры сияний. Пульсации.

Сверхтонкая временная структура – микровсплески оптического изучения

- За 3 сезона работы зарегистрировано 75 групп микровсплесков. Микровсплески измеряются сериями длительностью от 10 с до ~1 часа.
- Каждый импульс имеет сложную структуру. Временной интервал между импульсами не является постоянным и варьируется в диапазоне от 100 мс до 5 с.
- Типичная амплитуда составляет около 500–1000 отсчетов, что примерно соответствует интенсивности излучения на входном окне 10⁴–10⁵ фотон/см² ср с.
- Микровсплески наблюдаются в основном в период низкой геомагнитной активности (средний индекс К_р 1+).
- Микровсплески наблюдаются в вечернем секторе MLT. Вероятный эффект выборки событий или определяется физическим механизмом генерации?

Тонкая пространственно-временная структура микровсплесков

Аппроксимация двумерной функцией Гаусса распределения сигнала по матрице фотоприемника в максимуме локального микровсплеска

Угловой размер пятна составляет ~80 мрад, что соответствует области ~10 км на высоте 100 км.

(а): временная структура серии УФ-микровсплесков 21.11.2021. Синие точки — вспышки вне поля зрения, красные точки — микровсплески в виде дуги; (б): временная структура фрагмента сигнала, обведенного зеленым прямоугольником на панели (а), зелеными точками обозначены микровсплески в виде пятен; (в): карта каналов для яркого пятна вне поля зрения прибора; (г): карта каналов для дуги; (д): карта каналов для локального пятна в поде зрения фотометра.

- Траектория спутника NOAA-19 пересекала те же линии геомагнитного поля, что и в VTL, но в южном полушарии.
- Повышенная интенсивность наблюдается как минимум для 3 интегральных каналов (>40 кэВ, >130 кэВ и >287 кэВ), как в квазизахваченных, так и в высыпающихся потоках электронов. Таким образом, УФ-микровсплески измеряются в области изотропизации потока высокоэнергетических электронов с интенсивным высыпанием.

- 🗱 Антропгенные вспышки.
- 🗱 Вспышки, рассеяния внутри облаков.
- 7 Мезосферные разряды.
- ***** Lightning induced electron precipitation.
- Transmitter-Induced Precipitation of Electron Radiation.
- Relativistic electron microbursts.

Lorentzen, et al. GRL. 2001.

Marshall, R.A. et al. Front, Astron. Space Sci. 2019.

Surkov V. V. JASTP. - 2020.

Установка фотометра в обсерватории Арагац

Июнь 2024

TEPA-2010

Measurements of near-UV emission of TGF, EAS and intra-cloud discharges

Scientific tasks

- Study of the near-UV emission related to thunderstorm ground enhancements (TGEs) and terrestrial gamma-ray flashes (TGF) in a wide temporal scale.
- Testing of lens photometer capabilities for registering fluorescence radiation from extensive air showers (EASs).
- Measurements of near-UV background conditions on the Aragats mountain
- Probing of the possible EAS and lightning relations
- Measurements of fluorescent TGF emission
- Study the EAS fluorescent signal in a thunderstorm region characteristics and peculiarities
- Search for a possible EAS from relativistic dust grains (TUS-like events)

15

Моолниевые разряды и TGE

Временная структура и последовательность событий

Быстрое перемещение в поле зрения

2024-07-07 22:31:11.480235576

2024-07-07 22:31:11.768187284

Космический эксперимент «УФ атмосфера»

Цель КЭ

Получение карты свечения ночной атмосферы Земли в полосе длин волн ближнего ультрафиолета (300–400 нм) в пределах широт, доступных для наблюдения с орбиты МКС.

Задачи КЭ

- измерение пространственно-временной структуры свечения ночной атмосферы в области «ближнего» ультрафиолета (УФ, длины волн 300–400 нм) с высоким временным (2,5 мкс) и пространственным (5 км) разрешением в широком поле зрения (±18,3°);
- изучение временного и пространственного распределения свечения при быстрых (1–100 мс) электрических разрядах в атмосфере (транзиентные атмосферные явления (ТАЯ) и поиск корреляции карты распределения ТАЯ различного типа с геофизическими явлениями в верхней атмосфере, ионосфере и магнитосфере;
- изучение распределения по яркости свечения метеороидов с малыми размерами и массой (размер порядка миллиметров, масса порядка 0,1–1 г, энергия порядка 10⁵ Дж).

НА «УФ атмосфера» работает на борту МКС с 2019 г. по н.в., проведено более 120 сеансов

Результаты КЭ «УФ атмосфера». События типа ELVES.

Polar Histogram

Уникальные измерения тонкой пространственновременной структуры событий типа ELVES, позволяющие зондировать внутриоблачные процессы

События типа ELVES. Карта событий и пример анимации

Эксперимент	Частота регистрации событий типа ELVES
ISUAL	3.23/мин
JEM-GLIMS	~ 14/мин
УФ атмосфера	15.3/мин
Auger	1.3/мин
Eurosprite	0.2/мин

ELVES как ионосферный зонд внутриатмосферных процессов

50

100 X [km]

Sharakin, S., et al. *Cosmic Research*, 62(4), 330-338, 2024.

Построена вероятностная модель реконструкции эльфов, реализованная методами вероятностного программирования в РуМС. На нескольких примерах событий, зарегистрированных Mini-EUSO, показано применение байесовской

R.D. Lorenz Lightning detection on Venus: a critical review. PEPS, (2018) 5:34

- На сегодняшний день нет однозначного ответа на вопрос о существовании молний и механизмах их возникновения на Венере.
- Прямая регистрация оптического излучения молниевых разрядов на Венере затруднена плотным облачным покровом из серной кислоты.
- Для проекта «Венера-Д» предложена методика обнаружения и локализации молниевых разрядов по ионосферному отклику (транзиентные явления в ионосфере: ELVES, sprites).
- Разрабатывается аппаратура СОНЭТ-В (Система оптических наблюдений энергичных транзиентов для проекта Венера-Д) – изображающий фотометр и спектрометр.
- Прототипы аппаратуры проходят летные испытания в составе космических аппаратов «Созвездие-270».

- Входное окно D~5 см
- Оптическая система линза френеля
- Матрица фотоприемника телескопа – SiPM, 3 мм (MicroFJ-30035-TSV-A2)
- Угловое разрешение ~40 мрад.
- Временное разрешение ~ 1 мкс.
- Спектрометр 4 канала. 337 нм, 391 нм, 777 нм, 260 нм (557 нм)

- В измерениях на Кольском полуострове обнаружены микровсплески аврорального излучения. Микровсплески измеряются сериями длительностью от 10 с до ~2 часов. Временной интервал между импульсами не постоянен и варьируется в диапазоне от 100 мс до 5 с. Пространственная структура событий представлена различными формами, среди которых выделены широкие пятна, узкие дуги, пересекающие поле зрения фотометра и локальные пятна. Эти формы существуют одновременно и появляются независимо друг от друга. Угловой размер пятен может быть менее 0,1 рад.
- Рассматриваются различные гипотезы происхождения событий. Одна из основных высыпания в виде микровсплесков релятивистских электронов.
- На высокогорной станции Арагац в 2024 году проведены первые измерения пространственновременной структуры свечения в ближнем УФ-диапазоне во время событий типа TGE. Проводится анализ полученных данных фотометров и комплекса аппаратуры станции.
- Детектор «УФ атмосфера» работает на борту МКС в течение 5 лет. Получены уникальные данные о пространственно-временной структуре событий типа ELVES. Разработаны алгоритмы реконструкции динамики событий и определения положения родительской молнии.

