Зарядовые корреляции и флуктуации адронов в релятивистских соударениях тяжелых ионов

И.П.Лохтин

(Лаборатория сильных взаимодействий ОЭФВЭ)

Фундаментальная цель исследований с пучками релятивистских тяжелых ионов: свойства экстремального состояния субъядерной материи - кварк-глюонной образующейся при сверхвысоких плотностях энергии плазмы, U температурах.

- Максимально достижимые на сегодняшний день энергии (коллайдер LHC): высокотемпературное состояние кварк-глюнной среды, близкое К "протоматерии" в ранней Вселенной.
- Промежуточные энергии (коллайдер NICA): динамика кварк-адронных фазовых переходов (включая поиск «критической точки») вблизи их границы. Эти две взаимодополняющие задачи являются одними из актуальнейших в современной ядерной физике высоких энергий.

стадия

Функция баланса разно-заряженных частиц

$$B(\Delta y, \Delta \varphi) = \frac{1}{2} \left\{ \frac{N^{+-} \langle (\Delta y, \Delta \varphi) \rangle - \langle N^{++} (\Delta y, \Delta \varphi) \rangle}{\langle N^{+} \rangle} + \frac{\langle N^{-+} (\Delta y, \Delta \varphi) \rangle - \langle N^{--} (\Delta y, \Delta \varphi) \rangle}{\langle N^{-} \rangle} \right\},$$

 N^{+-} и N^{++}/N^{--} - количество пар разноименно и одноименно заряженных частиц соответственно с быстротами y_1 и y_2 , $|y_1-y_2| = \Delta y$ (для $\Delta \varphi$ - аналогично); N^+ и N^- - множественности положительно и отрицательно заряженных частиц.

Функция баланса (ФБ) - плотность вероятности того, что разноименно заряженные частицы разделены определенными интервалами (псевдо-) быстроты и азимутального угла.

ФБ характеризуется быстротной и азимутальными ширинами:

$$\langle \Delta \eta \rangle = \frac{\sum_{i} B_{i} \Delta \eta_{i}}{\sum_{i} B_{i}} \qquad \langle \Delta \varphi \rangle = \frac{\sum_{i} B_{i} \Delta \varphi_{i}}{\sum_{i} B_{i}}$$

Ширины ФБ чувствительны к времени разделения электрического заряда в ходе эволюции системы → информация о пространственно-временных характеристиках области испускания частиц (включая наличие и тип кварк-адронного фазового перехода)

Дальнодействующие зарядовые корреляции (широкое распределение) → раннее разделение заряда Короткодействующие зарядовые корреляции (узкое распределение) → позднее разделение заряда

 ΦF измерялись в экспериментах с тяжелыми ионами на ускорителях SPS, RHIC и LHC. Теоретические модели не описывают $\Phi F \rightarrow$ неучтенные механизмы зарядовых корреляций?

Модификация зарядовых корреляций в статистической модели

"Towards the centrality dependence description of the charge balance function in the HYDJET++ model" A.S. Chernyshov, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin Chinese Physics C 47 (2023) 084107

- Модельное исследование ФБ в соударениях PbPb при энергии LHC 2.76 ТэВ показало, что зарядовые корреляции частиц в конечном состоянии (распад резонансов и фрагментация струй) в модели HYDJET++ недостаточны для описания данных ALICE по зависимости ширин ФБ от центральности.
- Предложена модификация статистического рождения прямых заряженных адронов в модели HYDJET++ с пособытийным сохранением заряда на стадии вымораживания: рождение пар частица-античастица с углами (η₁, φ₁) и (η₂, φ₂), распределенными по Гауссу с ширинами σ_η, σ_φ
 Развитый подход позволил описать данные по ФБ (σ_n, σ_o увеличиваются для периферических столкновений).

Учет зарядового дисбаланса (RHIC, NICA) в модели HYDJET++

Функции баланса при энергиях 7.7 и 11.5 ГэВ

"Моделирование зарядовых корреляций адронов при энергиях в соударениях тяжелых ионов при энергиях NICA" *Е.Е.Забродин, В.Л.Коротких, И.П.Лохтин, С.В.Петрушанко, А.М.Снигирев, А.С.Чернышов, Г.Х.Эйюбова, ЖЭТФ 166 (2024) 340*

UrQMD и стандартная версия HYDJET++ не воспроизводят экспериментальные зависимости быстротных ширин ФБ от центральности.

Модификация HYDJET++ позволяет существенно улучшить описание данных (хорошо воспроизводит ширины до 30% центральности, но имеет место некоторая недооценка данных для более периферических соударений).

Флуктуации суммарного электрического заряда частиц

$$v_{dyn}[+,-] = \frac{\langle N_+(N_+-1)\rangle}{\langle N_+\rangle^2} + \frac{\langle N_-(N_--1)\rangle}{\langle N_-\rangle^2} - 2\frac{\langle N_+N_-\rangle}{\langle N_+\rangle\langle N_-\rangle} \right)$$

Флуктуации заряда используются для поиска сигналов КГП → флуктуации заряда в КГП меньше, чем для адронного газа?

Связь переменной v с величинами D и Σ (величины, независящие от объема и его флуктуаций):

$$Q = N_{+} - N_{-} \left[D = 4 \frac{\langle (\delta Q)^{2} \rangle}{\langle N_{ch} \rangle} = \langle N_{ch} \rangle \langle \nu_{+-,dyn} \rangle + 4 \right] \left[\Sigma[N_{+}, N_{-}] - 1 = \frac{\nu_{dyn}[+, -]}{\frac{1}{\langle N_{+} \rangle} + \frac{1}{\langle N_{-} \rangle}} \right] \stackrel{\text{при}}{\langle N_{+} \rangle \approx \langle N_{-} \rangle}$$

Флуктуации заряда пропорциональны q²

 $D = \begin{cases} 4, HG & Адронный газ \\ 3, HRG & Адронный газ с резонансами \\ 1 - 1.5, QGP & КГП \end{cases}$

S. Jeon and V. Koch, Phys. Rev. Lett. 85 (2000) 2076

Флуктуации электрического заряда при энергиях LHC

"Modeling net-charge fluctuations in heavy-ion collisions at the LHC"

G.O. Ambaryan, A.S. Chernyshov, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Chinese Physics C 49 (2025) 014109

Зависимость флуктуаций заряда от фазового окна |Др|

НІЛІNG, AMPT и стандартная версия HYDJET++ завышают экспериментальные зависимости флуктуаций электрического заряда. Модификация HYDJET++ позволяет описать данные в фазовом окне порядка |Δη|<1.5.

Расхождение результатов при больших |Δη| может быть связано с возможной зависимостью длины корреляции заряженных пар адронов от η.

Флуктуации электрического заряда при энергиях LHC

"Modeling net-charge fluctuations in heavy-ion collisions at the LHC"

G.O. Ambaryan, A.S. Chernyshov, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Chinese Physics C 49 (2025) 014109

Зависимость флуктуаций заряда от центральности взаимодействий при $|\Delta \eta| = 1.6$

HIJING, AMPT и стандартная версия HYDJET++ не воспроизводят экспериментальные зависимости флуктуаций электрического заряда от центральности.

Модификация HYDJET++ позволяет существенно улучшить описание данных (воспроизводится качественная зависимость от центральности, а также хорошее количественное описание), при этом длина корреляции заряженных пар адронов в модели уменьшается для более центральных столкновений.

Комплекс NICA (Дубна, РФ)

Основные параметры коллайдера (*запуск* – 2026?) $\sqrt{s_{NN}} = 4-11 \ \Gamma$ эB; *пучки: от* р до Au, Bi; L~10²⁷ cm⁻² c⁻¹ (Au), ~10³² cm⁻² c⁻¹ (p)

Реконструкция ФБ (h+h-)в эксперименте MPD/NICA

A.S. Chernyshov, I.P. Lokhtin, "Charge balance functions", prepared for second MPD paper "MPD physics performance studies in Bi+Bi collisions at $\sqrt{s_{NN}}=9.2$ GeV"

Восстановленные в условиях эксперимента MPD ширины функций зарядового баланса близки к генераторным ширинам в модели UrQMD.

Реконструкция ФБ (h+h-) в эксперименте BM@N

A.S. Chernyshov, I.P. Lokhtin, in progress

Восстановленные в условиях эксперимента BM@N ширины функций зарядового баланса близки к генераторным ширинам в модели DCMSMM.

Основные результаты

- ✓ Проведено обобщение разработанной ранее в рамках статистического подхода процедуры учета зарядовых корреляций прямых адронов для электрически нейтральных систем (LHC) на случай систем с дисбалансом положительного и отрицательного зарядов (RHIC, NICA), что позволило в модели HYDJET++ описать наблюдаемые зависимости ширин функций баланса разнозаряженных адронов от центральности соударений Au+Au при энергиях √s_{NN}=7.7 и 11.5 ГэВ.
- ✓ Показано, что модификация модели HYDJET++, учитывающая пособытийное сохранение электрического заряда образованных частиц в статистической части модели, позволяет одновременно описать флуктуации суммарного заряда и ширины функций баланса в соударениях Pb+Pb при энергиях LHC √s_{NN}=2.76 и 5.02 ТэВ.
- ✓ Разработанный ранее для эксперимента MPD на коллайдере NICA алгоритм реконструкции функций зарядового баланса адронов в соударениях тяжелых ионов адаптирован к условиям эксперимента BM@N на Нуклотроне.

Текущие работы и планы

- ✓ Модельное изучение флуктуаций суммарного электрического заряда частиц при энергиях NICA/RHIC.
- ✓ Разработка алгоритма реконструкции флуктуаций суммарного электрического заряда частиц для эксперимента MPD.
- ✓ Измерение зарядовых корреляций (функций баланса) адронов в эксперименте BM@N на Нуклотроне (взаимодействия Xe+CsI при энергиях пучка ксенона 3.8 ГэВ на пару нуклонов).

Публикации

1) "Моделирование зарядовых корреляций адронов при энергиях в соударениях тяжелых ионов при энергиях NICA", *Е.Е. Забродин, В.Л. Коротких, И.П. Лохтин, С.В. Петрушанко, А.М. Снигирев, А.С. Чернышов, Г.Х. Эйюбова,* ЖЭТФ 166 (2024) 340

2) "The charge balance functions with HYDJET++ model in heavy ion collisions at the LHC", A.S. Chernyshov, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, L.V. Malinina, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, International Journal of Modern Physics A 39 (2004) 2443201

3) "Modeling net-charge fluctuations in heavy-ion collisions at the LHC", G.O. Ambaryan, A.S. Chernyshov, G.Kh. Eyyubova, V.L. Korotkikh, I.P. Lokhtin, S.V. Petrushanko, A.M. Snigirev, E.E. Zabrodin, Chinese Physics C 49 (2025) 014109

Доклады на конференциях

1) A.S. Chernyshov, "Modeling of charge particle correlations in nucleus-nucleus interactions at NICA and RHIC energies", The 7th International Conference on Particle Physics and Astrophysics, Moscow, Russia, October 22-25 2024

2) E.E. Zabrodin, "HYDrodynamics with JETs (HYDJET++): Latest developments and results", XIII International Conference on New Frontiers in Physics, Crete, Greece, August 25 – September 5 2024

3) А.С. Чернышов, "Зарядовые корреляции адронов в соударениях тяжелых ионов: от LHC до NICA", Научная сессия секции ядерной физики ОФН РАН, Дубна, Россия, 1-5 апреля 2024

4) Г.Х. Эйюбова, "Модельное описание флуктуаций суммарного заряда в ядро-ядерных столкновениях при высоких энергиях", Научная конференция "Ломоносовские чтения-2024", Москва, Россия, 21 марта - 1 апреля 2024

5) И.П. Лохтин, "Моделирование зарядовых корреляций адронов в соударениях тяжелых ионов при энергиях NICA", Научная конференция "Ломоносовские чтения-2024", Москва, Россия, 21 марта - 1 апреля 2024

Спасибо за внимание!

Дополнительные слайды

Расчет и коррекция функций зарядового баланса

 N^+ — число положительных адронов, $d^2N^{+-}/d\Delta\eta d\Delta \varphi$ — распределение положительноотрицательных пар адронов по относительным псевдобыстроте и азимутальному углу.

В случае избытка положительного заряда (NICA/RHIC) для подавления искажения ФБ должны быть скорректированы согласно формуле ниже:

$$\frac{1}{N^{+}}\frac{d^{2}N^{+-}\left(\Delta\eta,\Delta\varphi\right)}{d\Delta\eta d\Delta\varphi} = \frac{1}{N^{+}}\frac{d^{2}N_{same}^{+-}\left(\Delta\eta,\Delta\varphi\right)}{d\Delta\eta d\Delta\varphi} - \frac{1}{N^{(p)}}\frac{d^{2}N_{mixed}^{+-}\left(\Delta\eta,\Delta\varphi\right)}{d\Delta\eta d\Delta\varphi}$$

Расчет и коррекция функций зарядового баланса

Для учета влияния конечного углового аксептанса детектора при моделировании или экспериментальном анализе используется метод, описанный в [STAR Coll., Phys. Rev. C 94 (2016) 024909], в котором поправленная на зарядовый дисбаланса ФБ умножается на весовые коэффициенты:

$$B(\Delta \eta | \infty) = \frac{B(\Delta \eta | \Delta \eta_{max})}{\left(1 - \frac{\Delta \eta}{\Delta \eta_{max}}\right)}$$

В случае азимутальной герметичности детектора коррекция азимутальной ФБ не требуется.

Модель HYDJET++ (HYDrodynamics & JETs)

Модель HYDJET++ (*http://lav01,sinp.msu.ru/~igor/hydjet*++) — генератор событий для изучения различных характеристик множественного рождения адронов, образующихся в релятивистских столкновениях тяжелых ионов в широком диапазоне энергий [*I. P. Lokhtin et al., Comp. Phys. Com. 180 (2009) 779].*

Конечное состояние ядерной реакции в HYDJET++ представляет собой суперпозицию двух независимых компонент:

- * термального адронного состояния (мягкая компонента), основанного на параметризации уравнений релятивистской гидродинамики;
- * многопартонного струйного состояния (жесткая компонента), получаемого модификацией характеристик адронных струй генератора РУТНІА.

Пакет программ для моделирования мягкой компоненты HYDJET++ написан на объектно-ориентированном языке C++ и использует ряд библиотек программной среды ROOT (*https://root.cern.ch*). Пакет программ для моделирования жесткой компоненты написан на языке FORTRAN.

Представленные результаты получены с использованием HYDJET++ версии 2.4.

Параметры HYDJET++ при энергиях RHIC/NICA и LHC

Параметр		Размерность		
$\sqrt{\mathbf{s_{NN}}}$	7.7	11.5	2760	ГэВ
A _w	197	197	208	
T ^{ch}	155	162	165	МэВ
T th	115	115	105	МэВ
μ_{B}	429	313	0	МэВ
μ_{S}	100	72	0	МэВ
μ_{I}	6	7	0	МэВ
τ	6.8	7.2	12.2	фм/с
σ _τ	1.5	1.5	3.5	фм/с
R	7.8	8.6	13.45	фм
Y _L max	1.2	1.2	4.5	
U ^{max}	0.74	0.74	1.265	

 $\sqrt{s_{NN}}$ – энергия на пару нуклонов в системе центра масс, A_w – атомный вес (номер) ядра, T^{ch} – температура химического вымораживания, T^{th} – температура термального вымораживания, μ_B – барионный химический потенциал на единицу заряда, μ_S – химический потенциал "странности" на единицу заряда, μ_I – изоспиновый химический потенциал на единицу заряда, τ – собственное время при термальном вымораживании в центральных соударениях, σ_{τ} – время испускания при термальном вымораживании в центральных соударениях, R – максимальный поперечный радиус при термальном вымораживании в центральных соударениях, Y_L^{max} – максимальная быстрота продольного потока при термальном вымораживании, U^{max} – максимальная быстрота поперечного потока при термальном вымораживании в центральных соударениях.

Настройка HYDJET++ для энергий RHIC/NICA по данным STAR

		π+/π-	K +/ K -	p/p
	RHIC STAR	0.93 ± 0.12	2.70 ± 0.31	141 ± 24
7.7 ГэВ	HYDJET++	0.89	2.70	130
	μ _{I,S,B} (МэВ)	6	100	429
	RHIC STAR	0.95 ± 0.14	2.03 ± 0.28	29.3 ± 5.3
11.5 ГэВ	HYDJET++	0.93	1.99	28.2
	μ _{I,S,B} (ΜэΒ)	7	72	313

Отношения множественностей разноименно заряженных адронов в центральных соударениях Au+Au при энергиях RHIC и значения химических потенциалов (μ_I – изопсиновый, μ_S – странный, μ_B – барионный) в модели HYDJET++. Экспериментальные выходы достаточно хорошо описываются моделью при ненулевых химических потенциалах.

Настройка HYDJET++ для энергий RHIC/NICA

	$\sqrt{s_{NN}} = 7.7 \Gamma_{3}B 0.5\%$ $0.2 < p_T < 2 (\Gamma_{3}B/c) y < 0.1$			$\sqrt{s_{NN}} = 11.5 \Gamma_{3}B 0.5\%$ $0.2 < p_T < 2 (\Gamma_{3}B/c) y < 0.1$		0-5% y <0.1	
	RHIC STAR	Станд. НҮДЈЕТ++	Мод. HYDJET++		RHIC STAR	Станд. НҮДЈЕТ++	Мод. HYDJET++
π^+	93.4	90.8	90.5	π^+	124	118	117
π-	100	102	101	π-	130	127	126
K +	20.8	18.5	18.4	K +	25.0	23.4	23.4
K-	7.7	6.8	6.8	K-	12.3	11.7	11.7
р	54.9	71.2	71.3	р	44.0	57.5	57.5
p	0.39	0.53	0.55	p	1.5	2.1	2.0
π+K+p	277	289	289	π+K+p	337	339	338

Экспериментальные выходы идентифицированных заряженных адронов удовлетворительно описываются стандартной и модифицированной версиями модели HYDJET++

Настройка HYDJET++ для энергий RHIC/NICA

√s_{NN} = 7.7 ГэВ

√s_{NN} = 11.5 ГэВ

Экспериментальные спектры идентифицированных адронов удовлетворительно описываются стандартной и модифицированной версиями модели HYDJET++ (хорошо для заряженных пионов и каонов, несколько хуже для (анти)протонов).

Параметры для зарядовых корреляций прямых адронов в модели HYDJET++ при энергиях RHIC/NICA

Центральность,	ση				
%	7.7 ГэВ	11.5 ГэВ			
0-5	1.25	1.00			
5-10	1.35	1.08			
10-20	1.47	1.17			
20-30	1.62	1.30			
30-40	1.80	1.44			
40-50	2.00	1.60			

σ_η – дисперсия распределения сгенерированных пар-античастиц в процедуре учета зарядовых корреляций.

Функции баланса разно-заряженных адронов (RHIC_BES/NICA)

Проведено модельное исследование ФБ с различными генераторами событий для соударений AuAu при энергиях 7.7 и 11.5 ГэВ на пару нуклонов:

- модели vHLLE и HYDJET++ воспроизводят данные STAR/RHIC по ширинам быстротной ФБ в центральных соударениях, модель UrQMD в периферических соударениях;
- ни одна из моделей не описывает зависимость ширины быстротной ФБ от центральности взаимодействий

→ неучтенные механизмы зарядовых корреляций частиц в этих моделях?

Программный код для построения ФБ (включая корректировки на зарядовый дисбаланс и аксептанс) встроен в MpdRoot для анализа смоделированных событий с учетом откликов детекторов.

Реконструкция ФБ в эксперименте MPD/NICA (π^+K^- , π^-K^+)

Реконструкция ФБ в эксперименте MPD/NICA ($\pi^+\pi^-$, K⁺K⁻)

