Лаборатория сильных взаимодействий

В составе структурного подразделения::

Телефон: +7 495 939 12 57

Сайт: http://lav01.sinp.msu.ru/

Адрес: Россия, Москва, микрорайон Ленинские Горы, 1с58 (корпус высоких энергий), комната 2-03, 2-05, 20-7, 2-08, 1-16

 

Лаборатория сильных взаимодействий

Лаборатория образована в 1967 году первоначально как Группа Высокогорных Исследований НИИЯФ МГУ. В 1978 году, в связи с изменением и расширением тематики исследований, преобразована в Лабораторию адронных взаимодействий в составе Отдела экспериментальной физики высоких энергий НИИЯФ МГУ. С момента образования (1967) до 2011 года лаборатория возглавлялась доктором физико-математических наук, профессором Людмилой Ивановной Сарычевой. С 2011 года по настоящее время лабораторией руководит доктор физико-математических наук Андрей Иванович Демьянов.

Лаборатория была создана для решения актуальных в то время проблем: состав и свойства космических лучей на высотах гор, возможность существования частиц с дробным зарядом, характеристики процессов множественной генерации частиц в адронных взаимодействиях при высоких энергиях, динамика развития электронно-ядерного каскада в веществе. В ходе проведения первого эксперимента лаборатории «ПИОН» возникли новые вопросы, исследование которых предполагало привлечение возможностей эксперимента на ускорителе.

В эксперименте с большой жидководородной камерой «МИРАБЕЛЬ» на ускорителе У-70 (ИФВЭ) исследовались характеристики множественного рождения частиц в антипротон-протонных и протон-протонных столкновениях. Данные эксперимента Е672 на установке Fermilab Meson West Spectrometer использованы для изучения механизма рождения J/ψ мезонов, а наблюдаемое в различных опытах поведение внутриядерного каскада, которое не укладывалось в представления простой каскадной модели, потребовало постановки эксперимента, специально нацеленного на изучение этого явления («Лидирующие частицы» на ускорителе У-10 ОИЯИ). Различные модели теории сильных взаимодействий (Квантовой Хромодинамики, КХД), в том числе расчёты на решётках, предсказывают существование связанного состояния двух глюонов – глюбола, и т.н. гибридов – связанных состояний кварка, антикварка и глюбола. Поиску таких состояний был посвящён эксперимент Е852 «Поиск мезонов с необычными квантовыми числами» на ускорителе AGS (BNL), в котором активно участвовала лаборатория.

В последние годы сотрудники лаборатории занимаются экспериментальным и феноменологическим анализом различных аспектов КХД в новых малоизученных режимах экстремально высоких плотностей энергии и температур, достигаемых в соударениях адронов и ядер высоких энергий. Процессы множественного рождения частиц в таких условиях содержат важную информацию о свойствах нового состояния материи - кварк-глюонной плазмы. Её формирование при достаточно высоких температурах и/или плотностях барионного заряда предсказывается КХД. Особую актуальность данная тематика приобрела в связи с началом работы Большого адронного коллайдера (LHC) в Европейском центре ядерных исследований ЦЕРН. Эксперименты с пучками тяжелых ионов на LHC дают уникальную возможность воссоздания в лаборатории кварк-глюонной материи, существовавшей на самых ранних стадиях развития Вселенной. Изучение её свойств представляет интерес как с точки зрения понимания природы фундаментальных взаимодействий и происхождения элементарных частиц, так и с точки зрения проверки современных теорий рождения и эволюции Вселенной.

Результаты исследования взаимодействий адронов в космических лучах (эксперимент ПИОН) показали, что дальнейшее продвижение в данном направлении требует существенно иного качества и большего объёма экспериментальной информации, доступных с использованием техники ускорительного эксперимента. В этой связи лаборатория подключилась к анализу данных водородной пузырьковой камеры (эксперимент «МИРАБЕЛЬ» на ускорителе У-70 ИФВЭ). Впоследствии, для решения возникших специальных задач, силами лаборатории был поставлен эксперимент «Лидирующие Частицы» на ускорителе У-10 ЛВЭ ОИЯИ. С начала 1990-х годов лаборатория занялась также анализом данных эксперимента Е672 (Fermilab), а затем приняла участие в создании и проведении эксперимента Е852 на ускорителе AGS (BNL) в рамках международной коллаборации Е852, а также в анализе данных эксперимента ZEUS (DESY). В настоящее время сотрудники лаборатории участвуют в проведении и анализе данных экспериментов CMS и ALICE на коллайдере LHC.

Для достижения цели лаборатории было предпринято следующее:
● Эксперимент «ПИОН»: создание экспериментальной установки на высокогорной станции Арагац, проведение измерений, разработка специальных методов анализа полученных данных.
● Эксперимент «МИРАБЕЛЬ»: участие в создании измерительно-вычислительного комплекса НИИЯФ МГУ для полного цикла обработки фильмовой информации; создание и адаптация пакетов прикладных программ; проведение сеансов измерений и анализ полученных данных.
● Эксперимент «Лидирующие Частицы»: разработка концепции эксперимента, создание комплекса аппаратуры «Сцинтилляционный Магнитный Спектрометр» (СМС-МГУ) на ускорителе У-10 ЛВЭ ОИАИ, проведение измерений и анализ данных. В 2000-2002 гг. эксперимент получил развитие в рамках совместного с ОИЯИ проекта «СМС МГУ – СФЕРА».
● Эксперимент Е672: участие в проведении измерений и анализе данных по рождению J/ψ мезонов во взаимодействиях pBe и πBe при энергиях от 515 до 800 ГэВ на ускорителе Tevatron (Fermilab).
● Эксперимент Е852: разработка и создание базовых элементов экспериментальной установки (прототипы многоканального γ-спектрометра и полномасштабный спектрометр на 3000 каналов), проведение измерений, разработка методов анализа полученных данных.
● Эксперимент ZEUS: разработка методов выделения дифракционных событий в электрон-протонных взаимодействиях на ускорителе HERА и анализ полученных данных.
● Эксперименты на LHC – главное направление деятельности лаборатории в последние годы. Сотрудники лаборатории внесли существенный вклад в техническое и методическое обеспечение эксперимента CMS:
- разработка математической модели магнитного поля установки CMS и комплекса аппаратуры для измерения плотности магнитного потока в области детекторов и внутри ярма соленоида, проведение измерений и создание полной карты магнитного поля установки;
- разработка, создание и тестирование элементов экспериментальной аппаратуры (система мониторинга нейтронных потоков в окрестности калориметра HF установки CMS), измерение нейтронных полей и светимости ускорителя в ходе эксперимента;
- разработка программы калибровки адронного калориметра CMS и программы реконструкции димюонов в трекерном детекторе, позволяющей восстановить димюонные резонансы малых масс (Υ, J/ψ) в условиях большой загрузки детектора;
- разработка алгоритма коррекции энергии струй с помощью трекерных детекторов (JetPlusTrack), а также алгоритма поиска струй и коррекции их энергии в столкновениях тяжелых ионов. Эти алгоритмы используются при анализе физических процессов, в частности, для изучения структуры струй, рождения Higgs бозона при слиянии векторных бозонов;
- разработка методов выделения «жестких» дифракционных событий, анализ «жестких» и «мягких» дифракционных каналов с образованием струй;
- развитие методов модельного анализа свойств ядерной материи в режимах экстремально высоких плотностей энергии и температур при релятивистских соударениях тяжелых ионов;
- разработка новых компьютерных моделей ядро-ядерных взаимодействий при высоких энергиях (Монте-Карло генераторов событий PYQUEN, HYDJET, HYDJET++) и моделирование различных каналов рождения частиц в соударениях тяжелых ионов на LHC;
- разработка феноменологической модели образования так называемых Centauro событий – сгустков кварковой материи с высоким бариохимическим потенциалом в столкновениях тяжёлых ионов и оценка сечения их рождения при энергиях LHC;
- разработка быстрого метода специального анализа (wavelet-анализа) для исследования структур в двумерном угловом распределении частиц в PbPb столкновениях при энергии LHC;
- лаборатория приняла активное участие в создании российского вычислительного центра для обработки данных с физических установок коллайдера LHC и участвует в поддержке Тier2 центра для группы по изучению взаимодействий тяжёлых ионов (CMS HEAVY ION группа);
- создание удаленного операционного центра (Remote Operational Center) – ROC MSU, который обеспечиваeт on-line доступ к внутренней сети CMS (CMS private network) в интерактивном режиме и позволяет контролировать процесс измерений в эксперименте CMS, находясь вне ЦЕРНа. Центр используется сотрудниками НИИЯФ МГУ для дистанционного контроля работы детекторных систем установки CMS и качества поступающей информации.

Участие лаборатории в программе эксперимента ALICE по физике тяжёлых ионов осуществляется в рамках сотрудничества с ОИЯИ и Университетом Осло в составе группы по изучению импульсных корреляций частиц (ALICE-FEMTO группа), и группы по изучению анизотропных потоковых эффектов ( ALICE-FLOW группа):
- сотрудники лаборатории внесли существенный вклад в создание и развитие Монте-Карло моделей UrQMD и QGSM и исследование с их помощью адрон-адронных и ядро-ядерных соударений в интервале энергий от нескольких ГэВ до 10 ТэВ;
- созданы пакеты программ для моделирования и анализа корреляционных функций в соударениях протонов и в ядерных соударениях. Разработаны компьютерные модели соударения тяжелых ионов (UKM, FASTMC) и выполнена настройка существующих компьютерных моделей (QGSM). Разработанные модели позволяют успешно описывать экспериментальные данные, они также используются для моделирования будущих экспериментов.

Основные результаты научной деятельности лаборатории:
● Эксперимент «ПИОН»: по измерениям ионизации в многослойном пропорциональном счётчике и энерговыделения в калориметре определён состав потока космических адронов (доля пионов и протонов) в области энергий выше 100 ГэВна высотах гор. Среди адронов, падающих на установку без сопровождения, зарегистрированы «аномальные» адроны, которые появляются при энергии выше 300 ГэВ и производят ионизацию в 1,5÷1,7 раз больше ожидаемой для однозарядных частиц. Развит метод анализа динамики электронно-ядерных каскадов в калориметре, изучена природа электромагнитных каскадов и исследован эффект замедления поглощения ядерного каскада с ростом энергии, противоречащий простой каскадной модели.
● Эксперимент «МИРАБЕЛЬ»: исследованы механизмы множественного рождения частиц во взаимодействиях K-протон, протон-протон и антипротон-протон при 32 ГэВ/с. Получены инклюзивные сечения рождения заряженных адронов. Исследовано рождение странных частиц и антипротон-протонная аннигиляция. Предложен метод статистического восстановления спектров заряженных частиц. Исследованы характеристики эксклюзивных каналов образования частиц в антипротон-протонных взаимодействиях. Изучены многочастичные корреляционные эффекты в зависимости от быстроты с помощью метода факториальных моментов. Работа отмечена Ломоносовской премией МГУ за 1990 год.
● Эксперимент «Лидирующие Частицы»: показано, что фрагментация протонов на ядрах осуществляется через связанное барионное состояние (типа изобары или дифракционного кластера), которое поглощается в ядерном веществе как обычный барион и распадается на конечные адронами за пределами ядра. Экспериментально обнаружен эффект каналирования ядер (углерода и кислорода) в изогнутом монокристалле кремния. Измерены характеристики эффекта и осуществлено его применение для вывода пучка частиц на установку. Впервые на ускорителе У-10 поставлен эксперимент на пучке поляризованных протонов. Исследованы спиновые эффекты в квазиупругом и неупругом протон-ядерном рассеянии и измерена анализирующая способность pA рассеяния на ядрах углерода и меди в различных каналах взаимодействия в зависимости от импульса лидирующей частицы.
● Эксперимент Е672: выделены каналы с рождением чармония χc1 и χc2 в области 0.1< x F < 0.8. Оценены доля J/ψ от распадов χc1 и χc2, отношение сечений рождения χc1 и χc2, и вклад прямого рождения J/ψ. Измерены дифференциальные распределения J/ψ, ψ(2S) по x F, p2T и по углу Готфрида-Джексона. Результаты включены в международный сборник по элементарным частицам «Review of Particle Properties» (Particle Data Group).
● Эксперимент Е852: результаты анализа данных эксперимента свидетельствуют о том, что наблюдаемые состояния π1(1400) и π1(1600) с квантовыми числами J PC = 1 − + являются кандидатами в «экзотические» мезоны, запрещённые в Стандартной Модели. Их параметры и характеристики распада включены в международный сборник «Review of Particle Properties».
● Эксперимент ZEUS: исследованы дифракционные процессы на коллайдере HERA. Измерены сечения эксклюзивного образования векторных мезонов в широком интервале энергий и виртуальностей фотона, а также сечения инклюзивных дифракционных процессов. Данные использованы для построения дифракционных партонных распределений в рамках КХД..
● Эксперименты на LHC:
1. Экспериментальные результаты:
В эксперименте CMS впервые измерено сечение электрослабого рождения Z бозона в сопровождении двух таггирующих струй в рр взаимодействиях при энергии протонов 7 ТэВ на статистике 5 фб−1. Полученные значения для мюонного и электронного каналов распада Z бозона согласуются с предсказанием Стандартной модели в NLO приближении. Проведен анализ адронной активности в событиях µ+µ+jеt+jet и e+e+jet+jet − это исследование имеет особую важность для выделения Higgs бозона.
Исследованы эффекты, свидетельствующие о формировании горячей кварк-глюонной материи в PbPb соударениях при энергии √sNN=2.76 ТэВ: последовательное подавление выхода различных состояний Υ-мезонов (1S, 2S, 3S) и асимметрия поперечной энергии в процессах с рождением пар струй и рождением фотон+струя.
В эксперименте ALICE получены первые экспериментальные данные по изучению корреляций тождественных каонов в pp и PbPb соударениях, а также первые экспериментальные данные
по корреляциям пионов и каонов в pp соударениях. Кроме того, проведён анализ и получены первые данные по v1-направленному потоку.
2. Результаты в теоретическом плане:
Проанализировано пространственное и импульсное распределения кварков и глюонов в адронах и корреляции между ними и показано, что поведение сечения двойного партонного рассеяния отклоняется от факторизационного приближения в соответствие с выведенными в ходе исследования уравнениями эволюции КХД; выполнена проверка результатов по данным экспериментов на LHC.
Исследован процесс адронизации кварк-глюонной плазмы в рамках фазового перехода первого рода: релаксация начального состояния к химическому и термическому равновесию; проблема «вымораживания» (freeze-out) рождённых частиц; формирование и эволюция «прямого» v1 и «эллиптического» v2 потоков заряженных пионов, каонов, протонов и антипротонов.
Получено уравнение состояния для горячей и плотной адронной материи. Установлено, что испускание частиц происходит непрерывно за время расширения системы, причём адроны с большими pT испускаются в первые 1-2 фемтосекунды. Предложено разделение «прямого» потока на «normal» и «antiflow» и предсказано усиление «antiflow» для более лёгких ядер.

Сотрудники лаборатории в рамках проектов тесно взаимодействовали с коллегами из ИФВЭ (МИРАБЕЛЬ), ОИЯИ (Лидирующие Частицы), Fermilab, Indiana U (E672), BNL, Indiana U и рядa других университетов США (Е852), DESY (ZEUS). В настоящее время сотрудничают с коллегами из CERN (CMS), Oslo U (ALICE), NICA ОИЯИ (MPD).

Из крупных проектов, в которых в данное время участвуют сотрудники лаборатории, необходимо выделить эксперименты CMS и ALICE на коллайдере LHC (CERN) и подготовку экспериментов на NICA, NUCLOTRON-M: BM@N, MPD.

Планы лаборатории на будущее включают: модернизацию измерительной аппаратуры и продолжение исследования свойств горячей сверхплотной материи на основе анализа множественного рождения адронов в экспериментах CMS и ALICE на LHC; дальнейшее совершенствование компьютерных моделей и теоретических подходов к описанию релятивистских соударений тяжелых ионов с учетом данных экспериментов на LHC, NICA и FAIR; развитие теории многопартонных взаимодействий и экспериментальную проверку ее предсказаний.

В лаборатории также осуществляется педагогическая работа: в лаборатории проходят практику и готовят курсовые и дипломные работы студенты Физического факультета МГУ; сотрудники лаборатории читают курсы лекций на Физическом факультете МГУ, проводят семинарские занятия со студентами – в настоящее время читаются спецкурсы «Физика столкновений ультрарелятивистских ядер» (В.Л.Коротких) и «Избранные вопросы в КХД» (А.М.Снигирёв), кафедра Физики атомного ядра и квантовой теории столкновений, 5-й курс ; «Физика элементарных частиц», 4 курс, и «Фундаментальные взаимодействия и физика на коллайдерах», 5 курс, кафедра Физики космоса (И.П.Лохтин). По итогам проводившихся в лаборатории научных исследований её сотрудниками и аспирантами защищено более 20 кандидатских и 4 докторских диссертаций.