Дозы радиации за разными толщинами защиты аппарата в зависимости от расстояния до Юпитера в плоскости экватора. В области орбиты Европы доза за защитой 1 мм алюминия составит ≈100 тыс. рад/сутки, за 4 мм — 30 тыс. рад/сутки, за 8 мм — 15 тыс. рад/сутки, за 2 см — 3.5 тыс. рад/сутки. В области орбиты Ганимеда дозы в 50–100 раз ниже.
Есть ли жизнь на спутнике Юпитера — Европе? Действительно ли под его ледяным панцирем скрывается жидкий океан солёной воды? Найти ответ на эти вопросы хотят не только НАСА и ЕКА, но и Роскосмос. Для выполнения российской миссии к Юпитеру сотрудники НИИЯФ МГУ решают одну из основных проблем — как снизить накопление радиации на беспилотном космическом аппарате, чтобы продлить его срок службы.
«На космическом аппарате за 8 миллиметрами алюминия в области орбиты Европы за два месяца набирается доза радиации почти 1 миллион рад. Для сравнения, на орбитах спутников Земли ГЛОНАСС даже за вдвое меньшей защитой на получение такой дозы потребуется 25 лет, — сказал сотрудник НИИЯФ МГУ Михаил Подзолко, работающий над российской миссией к Юпитеру. — Это предельно высокий уровень радиации даже для электроники «военного» класса».
Если жизнь есть в подлёдном океане Европы, то она защищена от внешней радиации льдом толщиной до 10 километров. Существует гипотеза, что на поверхность спутника через трещины, появляющиеся из-за внутренних приливов и отливов под воздействием мощной гравитации Юпитера, поднимается вещество из глубин, которое может содержать признаки органической жизни.
Для исследования Европы и других спутников Юпитера Россия взялась за работу над миссией «Лаплас», названной в честь великого учёного, который построил точную теорию движения спутников Юпитера. Зарубежные космические агентства в настоящее время также работают над новыми проектами полёта к Юпитеру. Последний вариант миссии НАСА — Europa Clipper, предполагает несколько десятков пролётов космического аппарата вблизи Европы. ЕКА сосредоточилась на проекте JUICE (Jupiter Icy Moon Explorer) миссии к другому спутнику Юпитера — Ганимед.
Один из вариантов российской миссии предполагает вывод автоматического космического аппарата на орбиту вокруг Европы, а также в этой или последующих миссиях — посадку на её поверхность (для сравнения прорабатывается также и вариант посадки на Ганимед). Над проектом работают сотрудники Института космических исследований РАН, НПО имени С.А. Лавочкина, Научно-исследовательского института ядерной физики МГУ (НИИЯФ МГУ), Института прикладной математики имени М.В. Келдыша РАН и других российских институтов.
Юпитер, как и Земля, обладает радиационными поясами. Радиационный пояс — это название области, где концентрируются захваченные магнитным полем планеты высокоэнергичные заряженные частицы — в основном электроны и протоны. Их потоки в поясах Юпитера на 2 порядка больше, чем около Земли. Кроме того, в отличие от Земли, в радиационных поясах Юпитера имеются значительные потоки электронов очень высоких «релятивистских» энергий, то есть летящих со скоростью близкой к скорости света, вплоть до 100 мегаэлектронвольт.
Внутри радиационного пояса Юпитера находятся орбиты трёх крупных спутников — Ио, Европы и Ганимеда. На орбите каждого спутника своя радиационная обстановка — чем ближе к планете, тем опаснее. Ближе к Юпитеру находится Ио, немного дальше Европа, и на более значительном расстоянии располагается Ганимед. Как видим, планируемый полёт к Европе сопряжён с очень большим радиационным риском.
Стоит вспомнить, что первым искусственным спутником Юпитера был космический аппарат НАСА «Галилео». Полёт «Галилео» в системе Юпитера включал 35 сильно вытянутых витков и продолжался с 1995 по 2003 годы. При этом общее время, проведённое спутником в радиационных поясах планеты, составило примерно 2 месяца, за которые аппарат, имевший защиту толщиной около 8 миллиметров (или 2.2 г/см2) алюминия, получил дозу свыше 650 тысяч рад, что вызвало существенные радиационные повреждения. При сближении с Юпитером космический аппарат исследовал его спутники — Каллисто, Ганимед, Европу, Ио, Амальтею.
Итак, как же минимизировать радиационный риск для космического аппарата? При исследовании выяснилось, что потоки высокоэнергичных заряженных частиц вблизи Европы в некоторой степени экранируются самой Европой. «Моделирование траекторий движения высокоэнергичных заряженных частиц в магнитном поле Юпитера относительно Европы позволило найти области на поверхности Европы и орбите вокруг неё, где радиация меньше», — пояснил сотрудник НИИЯФ МГУ Михаил Подзолко.
Наиболее безопасными местами для посадки аппарата оказались области высоких широт и «передняя» сторона Европы относительно направления её движения по орбите, где доза радиации снижена практически в 10 раз. Для орбитального аппарата на высоте 100 километров над поверхностью наиболее безопасной будет орбита с высоким наклонением. На ней космический аппарат получит дозу порядка четверти от максимальной, то есть 250 килорад за 2 месяца за такой же защитой, как у «Галилео». На российском аппарате «Лаплас», вероятно, будет применена защита вдвое толще, что дополнительно снизит радиационную нагрузку.
Надо учесть, что космический аппарат не выйдет на орбиту вокруг Европы сразу при прилёте к Юпитеру — это потребовало бы колоссального расхода топлива на торможение. Сначала он выйдет на сильно вытянутую орбиту вокруг Юпитера, после чего совершит некоторое количество витков с пролётами около Ганимеда и, возможно, Каллисто, используя их гравитацию для постепенного торможения. Общее время гравитационных манёвров может составить более года. За этот срок из-за пролётов через радиационные пояса Юпитера космический аппарат также подвергнется значительной радиационной опасности. Чтобы уменьшить и радиационную нагрузку, и затраты энергии сотрудники НИИЯФ МГУ, ИКИ РАН, ИПМ имени М.В. Келдыша РАН и другие разработчики решают сложную задачу оптимизации траектории.
«Миссия к спутнику Юпитера Европа из разряда трудноосуществимых становится сложной, но выполнимой задачей», — сказал Михаил Подзолко. Старт полёта к Юпитеру планируется в 2026 году.