Создан первый сверхпроводящий графен

Источник: http://www.strf.ru/material.aspx?CatalogId=222&d_no=103921#.VfmHr5fD-1k

Сверхпроводимость в покрытом литием монослое графена обнаружила группа учёных из Университета Британской Колумбии (Канада) совместно с коллегами из Института Макса Планка (Германия). Температура перехода в сверхпроводящее состояние у материала составила 5,9 кельвин, передаёт nplus1.ru.

Образцы графена выращивали на подложке гексагонального карбида кремния (6H-SiC), на который в вакууме осаждали атомы лития. Полученный образец исследовали методом фотоэлектронной спектроскопии с угловым разрешением (позволяет изучить энергию зон проводимости в материале), который показал «замедление» электронов по мере движения по поверхности образца. По словам авторов, это свидетельствует о наличии электрон-фононного взаимодействия, приводящего к образованию Куперовских пар электронов, ответственных за сверхпроводимость. Температура перехода в сверхпроводящее состояние покрытого литием монослоя графита составила 5,9 кельвин.

В дальнейшем команда планирует подтвердить результаты путем прямого измерения потери электрического сопротивления, а также проверкой эффекта Мейснера (вытеснение магнитного поля из объема сверхпроводника).

Практически одновременно с этой работой, независимая группа ученых из Университет Сонгюнгван в Южной Корее обнаружила эффект сверхпроводимости нескольких связанных графеновых слоев, также допированных литием. Измеренная по наблюдению эффекта Мейснера температура перехода составила 7,4 кельвин.

Следом за этой статьей с разницей в один день свои результаты опубликовала группа из Университета Манчестера, в которую входит нобелевский лауреат Андрей Гейм. На этот раз переход в сверхпроводящее состояние был обнаружен в графене, допированном кальцием (при температуре перехода 6 кельвин).

Возможность превращения графена в сверхпроводящий материал при допировании литием удалось предсказать теоретически в 2012 году. Это было сделано группой ученых из итальянского Университета Аквилы с помощью компьютерного моделирования. При этом в допированном графите (который, в отличие от графена, является объемным материалом) сверхпроводимость была экспериментально обнаружена еще в 2005 году.

Графен представляет собой двумерную плоскую сетку, состоящую из атомов углерода. Он обладает высокой механической прочностью (на разрыв в 200 раз прочнее стали), а также рекордно высокими теплопроводностью и подвижностью носителей заряда, что делает его перспективным материалом для создания наноэлектроники. Экспериментальное подтверждение сверхпроводимости графена открывает новые перспективы использования наноразмерных квантовых устройств.